
Computer Science
Class XII (As per CBSE Board)

Chapter 6
Idea of

algorithm
efficiency

New
syllabus
2021-22

Visit : python.mykvs.in for regular updates

Idea of
Efficiency - algorithm

Visit : python.mykvs.in for regular updates

Efficient programming is a manner of programming that,
when the program is executed, it uses a low amount of
overall resources pertaining to specially computer
hardware. A program is designed by a human being, and
different human beings may use different algorithms, or
sequences of codes, to perform particular tasks, so the
efficiency of such different programs/algorithm varies,
depend upon the number of resources being used.
Practicing to create a low size(number of line of
codes/number of operations) and low resource
algorithm results in an efficient program.

Visit : python.mykvs.in for regular updates

Performance defined as inversely proportional to
the wall clock time:-
Wall clock time/elapsed time: time to complete

a task as seen by the user. In wall clock timing all
kind of time is included ,e.g. operating system
overhead or potentially interfering other
applications etc.

CPU time: does not include time slices
introduced by external sources (e.g. running
other applications).

Idea of
Efficiency - algorithm

Visit : python.mykvs.in for regular updates

Performance defined as inversely proportional to the wall clock
time:-To maximize performance, minimize execution time
performance = 1 / execution_timeX
“X is n times faster than Y”
– Execution time on Y is n times longer than on X
Performancex Executiontimey

-------------------- = ---------------------- = n
Performancey Executiontimex

Example

If a particular desktop runs a program in 60 seconds and a laptop
runs the same program in 90 seconds, how much faster is the
desktop than the laptop?
= Performancedesktop/ Performancelaptop
= (1/60)/(1/90) = 1.5 So, the desktop is 1.5 times faster than the
laptop

Idea of
Efficiency - algorithm

Visit : python.mykvs.in for regular updates

Performance of algorithm depends on many internal and external
factors.
Internal factors- time required to run and memory required to run
External factors – size of input to the algorithm , speed of computer
External factors are controllable, so many internal factors are studied an
measured for algorithms efficiency.
We will determine efficiency of algorithm in terms of computational
complexity. Computational complexity – computation+complexity
Computation involves the problems to be solve and algorithm to solve
them.Complexity involves study of factors to determine how much
resource(time to run+memory) is necessary for algo to run efficiently.
Big o notation- allow us to measure the time and space Complexity of
our code.

Idea of
Efficiency - algorithm

Visit : python.mykvs.in for regular updates

performance measurement in terms of the number of operations:-
To compute the number of operations in a piece of code,then simply count the number of
arithmetic operations+other operation that code is performing. All operations (addition,
subtraction, multiplication, and division) are usually counted to be the same, which is not
exactly true, since multiplication includes several additions and division includes several
multiplications when actually executed by a computer. However, we are looking for an
estimate here, so it is reasonable to assume that on average, all operations count in the
same manner.
Here is an example (just for illustration):
r=0
for i in range(4):

for n in range(4):
r = r+(i*n)

print(r)
For each r there is 1 multiplications, 1 addition and 1 assignment resulting in 3 operations.
This loop is executed 4X4 times, so there are (4X4)r operations. This is the the order of the
code. In this example, its is O(42r).

Idea of
Efficiency - algorithm

Visit : python.mykvs.in for regular updates

performance measurement in terms of the number of operations –
(How to calculate)
1. Loop

for i in range(n):
m=m+2 (All the steps in loop take constant time c) & (loop is executed n times)

Total time = c*n =cn -> O(n)
2. Nested Loop

for i in range(n):
for j in range(n):

m=m+2 (Steps in red will take cn times)(outer loop executed n times)

Total time= cn*n = cn2 -> O(n2)

Idea of
Efficiency - algorithm

Visit : python.mykvs.in for regular updates

performance measurement in terms of the number of operations –
(How to calculate)

3. Consecutive statements
x=x+1 #constant time=a
for i in range(n): #constant time=cn

m=m+2

for i in range(n): #constant time=bn2

for j in range(n):
m=m+2

Total time = a+cn+bn2 = O(n2)[Considering only the dominant term]

Idea of
Efficiency - algorithm

Visit : python.mykvs.in for regular updates

performance measurement in terms of the number of operations –
(How to calculate)

4. If then else statements
If len(x) !=len(y) #a

return false #b
else

for i in range (n) #(c+d)*n
if x[i]!=y[i]: #c

return false #d

Total time=a+b+(c+d)*n=O(n)

Idea of
Efficiency - algorithm

Visit : python.mykvs.in for regular updates

performance measurement in terms of the number of operations –
(How to calculate)
5. Logarithmic running time (O(log n)) essentially means that the
running time grows in proportion to the logarithm of the input size - as an example,
if 10 items takes at most some amount of time x , and 100 items takes at most, say,
2x , and 10,000 items takes at most 4x , then it's looking like an O(log n)
time.Example program is binary search.Such alogrihthm may return result in best
case,average, and wors case
• The worst-case complexity of the algorithm is the function defined by the maximum number of steps

taken on any instance of size n. It represents the curve passing through the highest point of each
column.

• The best-case complexity of the algorithm is the function defined by the minimum number of steps
taken on any instance of size n. It represents the curve passing through the lowest point of each
column.

• Finally, the average-case complexity of the algorithm is the function defined by the average number
of steps taken on any instance of size n.

Idea of
Efficiency - algorithm

Visit : python.mykvs.in for regular updates

performance measurement in terms of the number of operations –
5. Logarithmic running time (O(log n)) of binary search
Best case - O (1) comparisons -In the best case, the item X is the middle in the array A. A
constant number of comparisions (actually just 1) are required.
Worst case - O (log n) comparsions -In the worst case, the item X does not exist in the array A
at all. Through each recursion or iteration of Binary Search, the size of the admissible range is
halved. This halving can be done ceiling(lg n) times. Thus, ceiling(lg n) comparisons are
required.
Average case - O (log n) comparsions - To find the average case, take the sum over all
elements of the product of number of comparsions required to find each element and the
probability of searching for that element. To simplify the analysis, assume that no item which
is not in A will be searched for, and that the probabilities of searching for each element are
uniform.
The difference between O(log(N)) and O(N) is extremely significant when N is large: for any
practical problem it is crucial that we avoid O(N) searches. For example, suppose your array
contains 2 billion (2 * 10**9) values. Linear search would involve about a billion comparisons;
binary search would require only 32 comparisons!

Idea of
Efficiency - algorithm

Visit : python.mykvs.in for regular updates

performance measurement in terms of the number of operations –
5. Logarithmic running time(O(log n)) of binary search (How to calc.)
The most commonly used Big O descriptions are
O(1) always terminates in about the same amount of time, regardless of the input size.
O(logN) takes a fixed additional amount of time each time the input size doubles.
O(N) takes twice as long to finish if the input size doubles.
O(N2) takes four times as long if the input size doubles.
O(2N) increases exponentially as the input size increases.
You can see from the table below that the difference is small for small input sizes, but it can
become tremendous as the input size increases even a little bit.
Input Size Time to Complete

O(1) O(logN) O(N) O(N2) O(2N)
1 1 1 1 1 1
2 1 2 2 4 4
4 1 3 4 16 16
8 1 4 8 64 256

16 1 5 16 254 65536

Idea of
Efficiency - algorithm

Visit : python.mykvs.in for regular updates

Measure the time taken by a Python Program
To measure the script execution time is simply possible by using time built-in
Python module. time() function is used to count the number of seconds elapsed
since the epoch.

e.g.program
import time
start = time.time()
r=0
for i in range(400):

for n in range(400):
r = r+(i*n)

print(r)
end = time.time()
print(end - start)
OUTPUT
6368040000
0.12480020523071289 #TIME TAKE TO EXECUTE THE PYTHON SCRIPT

Idea of
Efficiency - algorithm

Visit : python.mykvs.in for regular updates

Compare programs for time efficiency
With the help of time() function,we can compare two/more programs with different algo for
same problem that which one take less time.Below two code scripts are for prime no time
efficiency purpose.

import time
start = time.time()
a=int(input("Enter number: "))
k=0
for i in range(2,a//2+1):

if(a%i==0):
k=k+1

if(k<=0):
print("Number is prime")

else:
print("Number isn't prime")

end = time.time()
print(end - start)

OUTPUT
Enter number: 5
Number is prime
1.689096450805664

import time
start = time.time()
number = int(input("Enter any number: "))
if number > 1:

for i in range(2, number):
if (number % i) == 0:

print(number, “Not a prime no")
break

else:
print(number, "is a prime number")

else:
print(number, "is not a prime number")

end = time.time()
print(end - start)
OUTPUT
Enter any number: 5
5 is a prime number
1.909109115600586

Idea of
Efficiency - algorithm

Visit : python.mykvs.in for regular updates

number of comparisons in Best, Worst and Average case for linear
search:
Program
def search(arr, x):

for index, value in enumerate(arr):
if value == x:

return index
return -1

Driver Code
arr = [11, 10, 30, 15]
x = 30
print(x, "is present at index",

search(arr, x))

Idea of
Efficiency - algorithm

Visit : python.mykvs.in for regular updates

number of comparisons in Best, Worst and Average case for linear
search:
Best case-
The element being searched may be found at the first position.
In this case, the search terminates in success with just one
comparison.Thus in best case, linear search algorithm takes O(1)
operations.
Worst Case-
The element being searched may be present at the last position or
not present in the array at all.
In the former case, the search terminates in success with n
comparisons.In the later case, the search terminates in failure with n
comparisons.Thus in worst case, linear search algorithm takes O(n)
operations.

Idea of
Efficiency - algorithm

Visit : python.mykvs.in for regular updates

number of comparisons in Best, Worst and Average case for linear
search:
Average case-
The element being searched may be found at the center position.
In this case, the search terminates in success with just half of
elements comparison.Thus in best case, linear search algorithm takes
O(n/2) operations.
.

Idea of
Efficiency - algorithm

